Using neural networks to put customer satisfaction data into action

Date of publication: September 1, 1997

Company:

Abstract:

Customer satisfaction analyses often suffer from the fact that it is difficult to compress the large amount of gathered data material into relevant, concrete action recommendations for decision makers, whereby the practical significance and operative convertibility of the results is particularly disputed. The suggested solution basis describes how a model of factors influencing customer satisfaction, from which initial measures can be derived, can be produced using a special kind of neural network based on empirically gathered data. Relevant, precise action recommendations are derived by testing the measures using a neural network as a simulation tool. This reduces the volume of information in a customer satisfaction survey to a list of measures to be implemented by the decision maker.

Klaus Stadtler

Author

This is a long description of some author details.

Thomas Liehr

Author

This is a long description of some author details.

Research Papers

Research Papers

Research Papers

Free space

Catalogue: Congress 2014: What Inspires?

Author: Darren Fleetwood

 

September 10, 2014

  • PDF
  • This could also be of interest