Using neural networks to put customer satisfaction data into action

Date of publication: September 1, 1997


Customer satisfaction analyses often suffer from the fact that it is difficult to compress the large amount of gathered data material into relevant, concrete action recommendations for decision makers, whereby the practical significance and operative convertibility of the results is particularly disputed. The suggested solution basis describes how a model of factors influencing customer satisfaction, from which initial measures can be derived, can be produced using a special kind of neural network based on empirically gathered data. Relevant, precise action recommendations are derived by testing the measures using a neural network as a simulation tool. This reduces the volume of information in a customer satisfaction survey to a list of measures to be implemented by the decision maker.

  • PDF
  • This could also be of interest